
https://blog.iotcloudplatform.com/

What is I2C Bus PDF
The I2C bus, full name Inter-Integrated Circuit bus, is a synchronous, bidirectional,
half-duplex two-wire serial interface bus developed by PHILIPS (now NXP
Semiconductors).

This bus is mainly used to connect microcontrollers (MCUs) and their peripherals,
such as sensors, memory, etc., to achieve data communication between them. The
following is a detailed introduction to the I2C bus:

Basic concepts and features of the I2C bus

Basics of I2C communication

1. Basic concepts

The I2C bus consists of two lines: the serial data line (SDA) and the serial clock line
(SCL). The SDA line is used to transmit data, while the SCL line is used to provide a
clock signal to synchronize the transmission of data. This design enables the I2C bus
to connect multiple devices in a simple and effective way while reducing the number
of pins and connecting wires required.

2. Features

https://blog.iotcloudplatform.com/
https://blog.iotcloudplatform.com/knowledge-of-iot-sensor-devices-and-solutions-examples/
https://blog.iotcloudplatform.com/difference-between-stc15-mcu-and-stc51-mcu-in-mode-0/
https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

 Synchronous communication: The I2C bus uses synchronous communication,
that is, the transmission of data is synchronized with the clock signal. This
ensures the accuracy and reliability of data transmission.

 Bidirectional communication: The I2C bus supports bidirectional
communication, that is, data can be transmitted in both directions. This
allows the master device (usually a microcontroller) to exchange data
bidirectionally with slave devices (such as sensors, memory, etc.).

 Half-duplex: At any given moment, communication can only be carried out in
one direction on the I2C bus. This means that data cannot be transmitted in
both directions at the same time, but can be transmitted alternately in both
directions at different points in time.

 Multi-master system: The I2C bus supports a multi-master system, that is,
there can be multiple master devices on the bus at the same time. However,
at any time, only one master device can control the bus and perform data
transmission. This is achieved through the bus arbitration mechanism.

 Simplicity: The connection and configuration of the I2C bus are relatively
simple, and only two wires are required to achieve communication between
multiple devices. This reduces the complexity and cost of the system.

Working principle of the I2C bus

What is i2c bus explain

1. Start signal and stop signal

https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

 Start signal: When the SCL line is high, the SDA line changes from high to low,
indicating the beginning of a start signal. This marks the beginning of data
transmission.

 Stop signal: When the SDA line is low, the host pulls the SCL line high and
keeps it high, and then pulls the SDA line high again, indicating the end of the
transmission. This marks the end of data transmission.

2. Data transmission

 During data transmission, the clock signal (SCL) controls the data transmission
rate. When the SCL line is high, the data on the data line (SDA) must remain
stable; when the SCL line is low, the data on the data line can change.

 Data is transmitted in bits, and each clock cycle completes the transmission
and reception of one bit of data. Each transmitted byte (8 bits) must be
followed by an acknowledge bit (ACK) to confirm the correct reception of the
data.

3. Addressing and transmission direction

 The I2C bus specifies that the first byte after the start signal is the addressing
byte, which is used to address the controlled device and specifies the data
transmission direction. The 7-bit address in the addressing byte is used to
specify the address of the controlled device, and the 8th bit is used to specify
the data transmission direction (read or write).

 All devices on the bus compare the 7-bit address in the addressing byte with
the address of their own device. If the address matches, the device considers
itself to be addressed by the master device and determines whether it is a
transmitter or a receiver based on the read/write bit.

Communication protocol of I2C bus

I2C Communication Technology

The communication protocol of I2C bus includes a series of rules and steps to ensure
that data is correctly and reliably transmitted on the bus. Here are some key
communication protocols:

1. Communication protocol for the master to send a byte to the slave

 The master sends a start signal.
 The master sends the addressing byte (including 7-bit address and 1-bit

read/write direction).

https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

 The slave receives the addressing byte and compares the 7-bit address with
its own address.

 If the address matches, the slave configures itself as a transmitter or a
receiver based on the read/write direction bit.

 The master sends the data byte to be transmitted.
 The slave receives the data byte and writes an acknowledgement signal (ACK

or NACK) to the data line during the low level of the ninth clock cycle.

2. Communication protocol for the host to send multiple consecutive bytes

to the slave

 The host sends the first data byte according to the above protocol.
 The slave receives the first data byte and returns an acknowledgement signal.
 The host continues to send subsequent data bytes, each followed by an

acknowledgement signal.
 When the host has sent all data bytes, it sends a stop signal to end the

communication.

3. Communication protocol for the host to read a byte from the slave

 The host sends a start signal.
 The host sends an addressing byte (including a 7-bit address and a 1-bit

read/write direction, where the read/write direction bit is set to read).
 The slave receives the addressing byte and configures itself as a transmitter

according to the read/write direction bit.
 The slave sends the data byte to be transmitted.
 The host receives the data byte and writes an acknowledgement signal to the

data line during the low level of the ninth clock cycle (send ACK if you need to
continue reading the next byte; send NACK if you do not need to continue
reading).

4. Communication protocol for the host to read multiple consecutive bytes

from the slave

 The host reads the first data byte according to the above protocol.
 If it is necessary to continue reading subsequent bytes, the host sends an

acknowledgement signal (ACK) after each byte.
 When it is not necessary to continue reading, the host sends a

non-acknowledgement signal (NACK) to end the communication.
 The slave stops sending data after receiving the NACK signal.

Application of I2C bus

The I2C bus is widely used in various electronic devices due to its simplicity, flexibility
and efficiency. The following are some typical application scenarios:

https://blog.iotcloudplatform.com/top-5-best-wireless-data-acquisition-devices-in-china/
https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

1. Connection between microcontroller and peripheral devices

The I2C bus is often used to connect microcontrollers with their peripheral devices,
such as sensors, memory, displays, etc. Through the I2C bus, the microcontroller can
read sensor data, write data to the memory, or control the display content of the
display, etc.

2. Communication in embedded systems

In embedded systems, the I2C bus is often used for communication between
modules. For example, in smart home systems, the I2C bus can be used to connect
various sensors and actuators to achieve the control and monitoring functions of
smart home systems.

3. Industrial control system

The I2C bus is also widely used in industrial control systems. For example, on
automated production lines, the I2C bus can be used to connect various sensors and
actuators to achieve automated control and monitoring of production lines.

4. Consumer electronics

The I2C bus is also widely used in consumer electronics. For example, in electronic
products such as mobile phones, tablets, and cameras, the I2C bus can be used to
connect various sensors, memories, touch screens, and other components to achieve
various functions of the product.

Advantages and disadvantages of the I2C bus

1. Advantages

 Simplified connection: The I2C bus can achieve connection and
communication between multiple devices through two wires, greatly
simplifying the connection and wiring of the system.

 Reduce costs: The I2C bus helps reduce the cost of the system by reducing
the number of pins and connecting wires required.

 Improved reliability: The I2C bus uses synchronous communication and has a
response mechanism, which helps improve the reliability and accuracy of
data transmission.

 Flexibility: The I2C bus supports multi-host systems and allows data to be
transmitted alternately in both directions at different time points, which
makes it very flexible and suitable for various application scenarios.

2. Disadvantages

https://blog.iotcloudplatform.com/rp2040-zero-vs-esp32-c3/
https://blog.iotcloudplatform.com/silicon-diode-temperature-sensor-working-principle/
https://blog.iotcloudplatform.com/what-is-the-3d-cloud-prevention-and-control-system/
https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

 Rate limit: Although the rate of the I2C bus can reach hundreds of kbps or
even several Mbps (depending on the specific implementation and chip), its
rate is still relatively low compared to other high-speed interfaces (such as SPI,
USB, etc.).

 Distance limit: Since the I2C bus uses two wires for data transmission, its
transmission distance is subject to certain restrictions. At longer transmission
distances, problems such as signal attenuation and interference may occur.

 Power consumption: Although the power consumption of the I2C bus is
relatively low, its power consumption still needs to be considered in some
low-power applications (such as IoT devices).

What is the difference between I2C and SPI?

I2C (Inter-Integrated Circuit) and SPI (Serial Peripheral Interface) are both commonly
used serial communication protocols, mainly used for short-distance, board-level
communication between devices. The differences between the two are as follows:

I2C SPI

Number of signal

lines

Only 2 wires are used (SDA

data line and SCL clock

line)

Usually 4 lines are used

(MOSI, MISO, SCLK, SS/CS)

Communication
Half-duplex (only one-way

transmission at a time)

Full-duplex (can send and

receive at the same time)

Master-slave

relationship

There can be multiple master

and slave devices, using

addresses to identify

devices

One master and multiple

slaves, each slave device

requires a separate SS/CS

line

speed

Standard mode 100kHz, fast

mode 400kHz, high speed mode

up to 3.4MHz

Usually faster, up to tens

of MHz

Addressing mode

Use 7-bit or 10-bit

addresses to address

devices on the bus

Use dedicated chip select

(SS/CS) lines to select

devices

Number of devices

Due to address space

limitations, standard 7-bit

addressing can address up to

128 devices

Theoretically unlimited,

but limited by the number

of chip select lines

Electrical

Characteristics

Open drain output, requires

pull-up resistor
Push-pull output

Flow Control

There is a built-in clock

stretching mechanism for

flow control

No built-in flow control

Error Checking Contains acknowledge bit No built-in error checking

https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

for simple error detection

In general, I2C and SPI each have their own advantages and disadvantages. The
choice of which protocol to use depends on specific application requirements, such
as speed requirements, number of devices, system complexity, number of available
pins, and other factors.

Extensions and variants of the I2C bus

With the development of technology and the changing application requirements, the
I2C bus has also undergone some extensions and variants. The following are some
common extensions and variants:

1. SMBus (System Management Bus)

SMBus is an extension of the I2C bus, mainly used for system management and
power management applications. It adds support for error detection, recovery and
reporting, and provides higher reliability and security. SMBus is often used for the
connection and management of various sensors and actuators in computer systems.

2. PMBus (Power Management Bus)

PMBus is a further extension of SMBus, specifically for power management
applications. It provides richer power management functions and higher precision,
allowing the power management system to more accurately control and monitor the
working status of the power supply.

3. I2C-bus Plus

I2C-bus Plus is a variant of the I2C bus that adds support for high-speed data
transmission. By adopting differential signal transmission and more advanced
encoding technology, I2C-bus Plus can achieve higher data transmission rates and
longer transmission distances. This makes it suitable for application scenarios that
require high-speed data transmission.

4. TWI (Two-Wire Interface)

TWI is an interface compatible with the I2C bus launched by Atmel. It uses the same
two wires as the I2C bus for data transmission, but has some unique features and
functions. For example, TWI supports faster transmission rates and more flexible
communication protocols. This makes it suitable for application scenarios that
require high-speed and flexible communication.

Development trend of I2C bus

https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

With the rapid development of the Internet of Things, smart home, industrial
automation and other fields, the I2C bus, as a simple, efficient and flexible interface
technology, will continue to be widely used and developed. The following are some
development trends of the I2C bus:

1. Higher rate

The rate of the I2C bus can be flexibly adjusted according to application
requirements. Common rates are 100kHz, 400kHz and 1MHz. However, with the
increase in data transmission requirements, higher rates will become an important
development trend of the I2C bus.
By improving the physical layer and protocol layer of the I2C bus, higher data
transmission rates can be achieved, thereby meeting application scenarios with
higher real-time requirements.
For example, in a smart home system, a higher data transmission rate can enable
sensor data to be transmitted to the central controller faster, thereby achieving a
faster response and control of the home environment.

2. Longer distance

The traditional I2C bus has certain limitations in distance and is usually suitable for
short-distance communication. However, with the expansion of application
requirements, especially in the fields of industrial automation and the Internet of
Things, longer communication distance has become an important requirement.
In order to achieve a longer communication distance, signal relay or enhancement
measures can be adopted, such as using an I2C expander or buffer. These
technologies can extend the communication distance of the I2C bus, allowing the I2C
bus to be applied to a wider range of scenarios.

3. Multi-host support:

The I2C bus already supports multi-host mode, which allows multiple master devices
to be connected to the same bus. In the future, as application requirements increase,
multi-host support will be more complete and the arbitration mechanism will be
more efficient, thereby achieving more efficient use of bus resources.

4. Low-power design:

With the increasing requirements for energy saving and environmental protection,
low-power design will become an important development trend of the I2C bus. By
optimizing the protocol layer and physical layer design of the I2C bus, power
consumption can be reduced and the service life of the device can be extended.

5. Integration improvement:

https://blog.iotcloudplatform.com/top-61-internet-of-things-iot-control-modules-in-the-world/
https://blog.iotcloudplatform.com/top-7-iot-embedded-development-examples/
https://blog.iotcloudplatform.com/top-7-iot-embedded-development-examples/
https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

With the continuous development of semiconductor technology, the I2C bus will be
more integrated into various chips, such as microcontrollers, sensors, etc. This will
make the application of the I2C bus more convenient and flexible.

6. Enhanced security:

In applications such as the Internet of Things and smart homes, security is an
important issue. In the future, the I2C bus will adopt more secure data transmission
protocols and encryption technologies to protect the security of user data.

About IoT Cloud Platform

IOT Cloud Platform (blog.iotcloudplatform.com) focuses on IoT design, Internet of
Things programming, security Internet of Things, industrial IOT, military Internet of
Things, best Internet of Things projects, IOT modules, embedded development, IOT
circuit boards, IOT solutions, Raspberry Pi development and design, Arduino
programming, programming languages, RFID, lora devices, Internet of Things
systems, sensors, smart homes, smart cities, new energy, semiconductors, smart
hardware, photovoltaic solar energy, lithium batteries, chips and other scientific and
technological knowledge.

FAQs

Here are some common questions and answers about the I2C bus:

How many slaves can a host connect to in I2C communication?

Theoretically, a host can connect to 128 slaves (because the slave address length is 7
bits), but in reality, due to the influence of bus parasitic capacitance, it is generally
no more than 8, and the bus capacitance is controlled within 400pF.

Why does I2C communication require pull-up resistors? What is the

principle of the pull-up resistor value?

In the I2C protocol, the bus is at a high level when idle, and there is a response
mechanism during the communication process. Both the host and the slave can pull
down the SDA bus. Therefore, the I2C communication interface is generally designed
as an open-drain output structure, and a pull-up resistor must be added to maintain
the high level of the bus. The value of the pull-up resistor needs to be moderate. If it
is too large, the rising edge of the waveform will slow down, affecting the
communication quality; if it is too small, the current injected into the chip at a low
level will be too large, which may damage the chip.

What is the rate of I2C communication?

https://blog.iotcloudplatform.com/global-iot-platform-advertising-alliance-cooperation/
https://blog.iotcloudplatform.com/
https://blog.iotcloudplatform.com/
https://blog.iotcloudplatform.com/things-to-note-when-developing-and-programming-iot-circuit-boards/
https://blog.iotcloudplatform.com/things-to-note-when-developing-and-programming-iot-circuit-boards/
https://blog.iotcloudplatform.com/top-5-hardware-platforms-for-iot-development-in-the-world/
https://blog.iotcloudplatform.com/tag/iot-photovoltaic-best-iot-solar-panels/
https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

I2C communication is a low-speed communication, generally at 100kHz~400kHz. In a
few cases, a higher rate, such as 1MHz, is used. However, it should be noted that the
I2C communication distance should not be too long, otherwise it will increase the
bus parasitic capacitance and slow down the rising edge of the communication
waveform. At this time, it can be improved by reducing the rate or reducing the
pull-up resistor.

In I2C communication, how does the host tell the slave whether to perform

a read operation or a write operation next?

After the host transmits the 7-bit slave address, it will immediately transmit a
read-write bit (bit 8). The 8th bit is high for "read" and low for "write". After sending
the read-write bit, the host releases the bus and waits for the slave to pull down the
9th bit for response.

How is the address of the I2C slave determined?

The address of the I2C slave is determined by the hardware address and the
software address. The hardware address is fixed by circuit design, while the software
address is set by programming. In specific applications, the address of the slave
needs to be determined according to the actual situation.

Why is a 330Ω series resistor required on the I2C line?

The 330Ω series resistor is used to improve the anti-interference ability of I2C radio
frequency (RF) noise. The series resistor and the pin capacitor form a low-pass filter
to filter out the high-frequency noise coupled to the I2C bus.

How to detect the waveform and locate the problem during I2C

communication?

You can use an oscilloscope or logic analyzer to capture the waveforms of SCL and
SDA. Through waveform analysis, you can check whether the address bits sent by the
host are correct, whether the slave has a response, whether the high level, low level,
rising edge, and falling edge of the waveform meet the requirements, etc., so as to
locate the problem.

What is clock stretching in I2C communication?

Clock stretching is a phenomenon in which an I2C slave pulls the SCL level down from
the 9th clock (that is, from the clock sent by the ACK signal) during each data
transmission process. The time the clock is pulled down depends on the time the
CPU handles the interrupt, and therefore depends on the CPU rate rather than the
I2C clock rate.

https://blog.iotcloudplatform.com/


https://blog.iotcloudplatform.com/

https://blog.iotcloudplatform.com/

	Basic concepts and features of the I2C bus
	1. Basic concepts
	2. Features

	Working principle of the I2C bus
	1. Start signal and stop signal
	2. Data transmission
	3. Addressing and transmission direction

	Communication protocol of I2C bus
	1. Communication protocol for the master to send a
	2. Communication protocol for the host to send mul
	3. Communication protocol for the host to read a b
	4. Communication protocol for the host to read mul

	Application of I2C bus
	1. Connection between microcontroller and peripher
	2. Communication in embedded systems
	3. Industrial control system
	4. Consumer electronics

	Advantages and disadvantages of the I2C bus
	1. Advantages
	2. Disadvantages

	What is the difference between I2C and SPI?
	Extensions and variants of the I2C bus
	1. SMBus (System Management Bus)
	2. PMBus (Power Management Bus)
	3. I2C-bus Plus
	4. TWI (Two-Wire Interface)

	Development trend of I2C bus
	1. Higher rate
	2. Longer distance
	3. Multi-host support:
	4. Low-power design:
	5. Integration improvement:
	6. Enhanced security:

	FAQs

